Metamath Proof Explorer


Theorem xnn0n0n1ge2b

Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021)

Ref Expression
Assertion xnn0n0n1ge2b N0*N0N12N

Proof

Step Hyp Ref Expression
1 elxnn0 N0*N0N=+∞
2 nn0n0n1ge2b N0N0N12N
3 0nn0 00
4 nn0nepnf 000+∞
5 3 4 ax-mp 0+∞
6 5 necomi +∞0
7 neeq1 N=+∞N0+∞0
8 6 7 mpbiri N=+∞N0
9 1nn0 10
10 nn0nepnf 101+∞
11 9 10 ax-mp 1+∞
12 11 necomi +∞1
13 neeq1 N=+∞N1+∞1
14 12 13 mpbiri N=+∞N1
15 8 14 jca N=+∞N0N1
16 2re 2
17 16 rexri 2*
18 pnfge 2*2+∞
19 17 18 ax-mp 2+∞
20 breq2 N=+∞2N2+∞
21 19 20 mpbiri N=+∞2N
22 15 21 2thd N=+∞N0N12N
23 2 22 jaoi N0N=+∞N0N12N
24 1 23 sylbi N0*N0N12N