Metamath Proof Explorer


Theorem xpcoid

Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Assertion xpcoid A×AA×A=A×A

Proof

Step Hyp Ref Expression
1 co01 =
2 id A=A=
3 2 sqxpeqd A=A×A=×
4 0xp ×=
5 3 4 eqtrdi A=A×A=
6 5 5 coeq12d A=A×AA×A=
7 1 6 5 3eqtr4a A=A×AA×A=A×A
8 xpco AA×AA×A=A×A
9 7 8 pm2.61ine A×AA×A=A×A