Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Equinumerosity xpcomen  
				
		 
		
			
		 
		Description:   Commutative law for equinumerosity of Cartesian product.  Proposition
       4.22(d) of Mendelson  p. 254.  (Contributed by NM , 5-Jan-2004) 
       (Revised by Mario Carneiro , 15-Nov-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						xpcomen.1   ⊢   A  ∈  V       
					 
					
						xpcomen.2   ⊢   B  ∈  V       
					 
				
					Assertion 
					xpcomen   ⊢   A  ×  B   ≈   B  ×  A      
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							xpcomen.1  ⊢   A  ∈  V       
						
							2 
								
							 
							xpcomen.2  ⊢   B  ∈  V       
						
							3 
								1  2 
							 
							xpex  ⊢    A  ×  B    ∈  V       
						
							4 
								2  1 
							 
							xpex  ⊢    B  ×  A    ∈  V       
						
							5 
								
							 
							eqid  ⊢     x  ∈   A  ×  B   ⟼   ⋃    x    -1         =    x  ∈   A  ×  B   ⟼   ⋃    x    -1              
						
							6 
								5 
							 
							xpcomf1o  ⊢     x  ∈   A  ×  B   ⟼   ⋃    x    -1         :   A  ×  B    ⟶  1-1 onto  B  ×  A         
						
							7 
								
							 
							f1oen2g   ⊢     A  ×  B    ∈  V    ∧    B  ×  A    ∈  V    ∧     x  ∈   A  ×  B   ⟼   ⋃    x    -1         :   A  ×  B    ⟶  1-1 onto  B  ×  A       →   A  ×  B   ≈   B  ×  A        
						
							8 
								3  4  6  7 
							 
							mp3an  ⊢   A  ×  B   ≈   B  ×  A