Metamath Proof Explorer


Theorem xpct

Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017)

Ref Expression
Assertion xpct AωBωA×Bω

Proof

Step Hyp Ref Expression
1 ctex BωBV
2 1 adantl AωBωBV
3 simpl AωBωAω
4 xpdom1g BVAωA×Bω×B
5 2 3 4 syl2anc AωBωA×Bω×B
6 omex ωV
7 6 xpdom2 Bωω×Bω×ω
8 7 adantl AωBωω×Bω×ω
9 domtr A×Bω×Bω×Bω×ωA×Bω×ω
10 5 8 9 syl2anc AωBωA×Bω×ω
11 xpomen ω×ωω
12 domentr A×Bω×ωω×ωωA×Bω
13 10 11 12 sylancl AωBωA×Bω