Metamath Proof Explorer


Theorem xpdisj2

Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004)

Ref Expression
Assertion xpdisj2 AB=C×AD×B=

Proof

Step Hyp Ref Expression
1 xpeq2 AB=CD×AB=CD×
2 inxp C×AD×B=CD×AB
3 xp0 CD×=
4 3 eqcomi =CD×
5 1 2 4 3eqtr4g AB=C×AD×B=