Metamath Proof Explorer


Theorem xpen

Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of Mendelson p. 254. (Contributed by NM, 24-Jul-2004) (Proof shortened by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpen ABCDA×CB×D

Proof

Step Hyp Ref Expression
1 relen Rel
2 1 brrelex1i CDCV
3 endom ABAB
4 xpdom1g CVABA×CB×C
5 2 3 4 syl2anr ABCDA×CB×C
6 1 brrelex2i ABBV
7 endom CDCD
8 xpdom2g BVCDB×CB×D
9 6 7 8 syl2an ABCDB×CB×D
10 domtr A×CB×CB×CB×DA×CB×D
11 5 9 10 syl2anc ABCDA×CB×D
12 1 brrelex2i CDDV
13 ensym ABBA
14 endom BABA
15 13 14 syl ABBA
16 xpdom1g DVBAB×DA×D
17 12 15 16 syl2anr ABCDB×DA×D
18 1 brrelex1i ABAV
19 ensym CDDC
20 endom DCDC
21 19 20 syl CDDC
22 xpdom2g AVDCA×DA×C
23 18 21 22 syl2an ABCDA×DA×C
24 domtr B×DA×DA×DA×CB×DA×C
25 17 23 24 syl2anc ABCDB×DA×C
26 sbth A×CB×DB×DA×CA×CB×D
27 11 25 26 syl2anc ABCDA×CB×D