Metamath Proof Explorer


Theorem xpider

Description: A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion xpider A×AErA

Proof

Step Hyp Ref Expression
1 relxp RelA×A
2 dmxpid domA×A=A
3 cnvxp A×A-1=A×A
4 xpidtr A×AA×AA×A
5 uneq1 A×A-1=A×AA×A-1A×A=A×AA×A
6 unss2 A×AA×AA×AA×A-1A×AA×AA×A-1A×A
7 unidm A×AA×A=A×A
8 eqtr A×A-1A×A=A×AA×AA×AA×A=A×AA×A-1A×A=A×A
9 sseq2 A×A-1A×A=A×AA×A-1A×AA×AA×A-1A×AA×A-1A×AA×AA×A
10 9 biimpd A×A-1A×A=A×AA×A-1A×AA×AA×A-1A×AA×A-1A×AA×AA×A
11 8 10 syl A×A-1A×A=A×AA×AA×AA×A=A×AA×A-1A×AA×AA×A-1A×AA×A-1A×AA×AA×A
12 7 11 mpan2 A×A-1A×A=A×AA×AA×A-1A×AA×AA×A-1A×AA×A-1A×AA×AA×A
13 5 6 12 syl2im A×A-1=A×AA×AA×AA×AA×A-1A×AA×AA×A
14 3 4 13 mp2 A×A-1A×AA×AA×A
15 df-er A×AErARelA×AdomA×A=AA×A-1A×AA×AA×A
16 1 2 14 15 mpbir3an A×AErA