Metamath Proof Explorer


Theorem xpsdsfn

Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsds.t T=R×𝑠S
xpsds.x X=BaseR
xpsds.y Y=BaseS
xpsds.1 φRV
xpsds.2 φSW
xpsds.p P=distT
Assertion xpsdsfn φPFnX×Y×X×Y

Proof

Step Hyp Ref Expression
1 xpsds.t T=R×𝑠S
2 xpsds.x X=BaseR
3 xpsds.y Y=BaseS
4 xpsds.1 φRV
5 xpsds.2 φSW
6 xpsds.p P=distT
7 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
8 eqid ScalarR=ScalarR
9 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
10 1 2 3 4 5 7 8 9 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
11 1 2 3 4 5 7 8 9 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
12 7 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
13 12 a1i φxX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
14 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
15 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
16 13 14 15 3syl φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
17 ovexd φScalarR𝑠R1𝑜SV
18 eqid distScalarR𝑠R1𝑜S=distScalarR𝑠R1𝑜S
19 10 11 16 17 18 6 imasdsfn φPFnX×Y×X×Y