Metamath Proof Explorer


Theorem imasdsfn

Description: The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015) (Proof shortened by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imasds.e E=distR
imasds.d D=distU
Assertion imasdsfn φDFnB×B

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imasds.e E=distR
6 imasds.d D=distU
7 eqid xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
8 xrltso <Or*
9 8 infex supnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<V
10 7 9 fnmpoi xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<FnB×B
11 1 2 3 4 5 6 imasds φD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
12 11 fneq1d φDFnB×BxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<FnB×B
13 10 12 mpbiri φDFnB×B