Metamath Proof Explorer


Theorem xpsfeq

Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion xpsfeq GFn2𝑜G1𝑜G1𝑜=G

Proof

Step Hyp Ref Expression
1 fvex GV
2 fvex G1𝑜V
3 fnpr2o GVG1𝑜VG1𝑜G1𝑜Fn2𝑜
4 1 2 3 mp2an G1𝑜G1𝑜Fn2𝑜
5 4 a1i GFn2𝑜G1𝑜G1𝑜Fn2𝑜
6 id GFn2𝑜GFn2𝑜
7 elpri k1𝑜k=k=1𝑜
8 df2o3 2𝑜=1𝑜
9 7 8 eleq2s k2𝑜k=k=1𝑜
10 fvpr0o GVG1𝑜G1𝑜=G
11 1 10 ax-mp G1𝑜G1𝑜=G
12 fveq2 k=G1𝑜G1𝑜k=G1𝑜G1𝑜
13 fveq2 k=Gk=G
14 11 12 13 3eqtr4a k=G1𝑜G1𝑜k=Gk
15 fvpr1o G1𝑜VG1𝑜G1𝑜1𝑜=G1𝑜
16 2 15 ax-mp G1𝑜G1𝑜1𝑜=G1𝑜
17 fveq2 k=1𝑜G1𝑜G1𝑜k=G1𝑜G1𝑜1𝑜
18 fveq2 k=1𝑜Gk=G1𝑜
19 16 17 18 3eqtr4a k=1𝑜G1𝑜G1𝑜k=Gk
20 14 19 jaoi k=k=1𝑜G1𝑜G1𝑜k=Gk
21 9 20 syl k2𝑜G1𝑜G1𝑜k=Gk
22 21 adantl GFn2𝑜k2𝑜G1𝑜G1𝑜k=Gk
23 5 6 22 eqfnfvd GFn2𝑜G1𝑜G1𝑜=G