| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( G ` (/) ) e. _V |
| 2 |
|
fvex |
|- ( G ` 1o ) e. _V |
| 3 |
|
fnpr2o |
|- ( ( ( G ` (/) ) e. _V /\ ( G ` 1o ) e. _V ) -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
| 4 |
1 2 3
|
mp2an |
|- { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o |
| 5 |
4
|
a1i |
|- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
| 6 |
|
id |
|- ( G Fn 2o -> G Fn 2o ) |
| 7 |
|
elpri |
|- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
| 8 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 9 |
7 8
|
eleq2s |
|- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
| 10 |
|
fvpr0o |
|- ( ( G ` (/) ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) ) |
| 11 |
1 10
|
ax-mp |
|- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) |
| 12 |
|
fveq2 |
|- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) ) |
| 13 |
|
fveq2 |
|- ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) |
| 14 |
11 12 13
|
3eqtr4a |
|- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 15 |
|
fvpr1o |
|- ( ( G ` 1o ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) ) |
| 16 |
2 15
|
ax-mp |
|- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) |
| 17 |
|
fveq2 |
|- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) ) |
| 18 |
|
fveq2 |
|- ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) |
| 19 |
16 17 18
|
3eqtr4a |
|- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 20 |
14 19
|
jaoi |
|- ( ( k = (/) \/ k = 1o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 21 |
9 20
|
syl |
|- ( k e. 2o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 22 |
21
|
adantl |
|- ( ( G Fn 2o /\ k e. 2o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 23 |
5 6 22
|
eqfnfvd |
|- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } = G ) |