Metamath Proof Explorer


Theorem xpssres

Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion xpssres CAA×BC=C×B

Proof

Step Hyp Ref Expression
1 df-res A×BC=A×BC×V
2 inxp A×BC×V=AC×BV
3 inv1 BV=B
4 3 xpeq2i AC×BV=AC×B
5 1 2 4 3eqtri A×BC=AC×B
6 sseqin2 CAAC=C
7 6 biimpi CAAC=C
8 7 xpeq1d CAAC×B=C×B
9 5 8 eqtrid CAA×BC=C×B