Metamath Proof Explorer


Theorem xpstopn

Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses xpstps.t T=R×𝑠S
xpstopn.j J=TopOpenR
xpstopn.k K=TopOpenS
xpstopn.o O=TopOpenT
Assertion xpstopn RTopSpSTopSpO=J×tK

Proof

Step Hyp Ref Expression
1 xpstps.t T=R×𝑠S
2 xpstopn.j J=TopOpenR
3 xpstopn.k K=TopOpenS
4 xpstopn.o O=TopOpenT
5 eqid BaseR=BaseR
6 eqid BaseS=BaseS
7 eqid xBaseR,yBaseSx1𝑜y=xBaseR,yBaseSx1𝑜y
8 1 2 3 4 5 6 7 xpstopnlem2 RTopSpSTopSpO=J×tK