Metamath Proof Explorer


Theorem xpstopnlem2

Description: Lemma for xpstopn . (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses xpstps.t T=R×𝑠S
xpstopn.j J=TopOpenR
xpstopn.k K=TopOpenS
xpstopn.o O=TopOpenT
xpstopnlem.x X=BaseR
xpstopnlem.y Y=BaseS
xpstopnlem.f F=xX,yYx1𝑜y
Assertion xpstopnlem2 RTopSpSTopSpO=J×tK

Proof

Step Hyp Ref Expression
1 xpstps.t T=R×𝑠S
2 xpstopn.j J=TopOpenR
3 xpstopn.k K=TopOpenS
4 xpstopn.o O=TopOpenT
5 xpstopnlem.x X=BaseR
6 xpstopnlem.y Y=BaseS
7 xpstopnlem.f F=xX,yYx1𝑜y
8 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
9 fvexd RTopSpSTopSpScalarRV
10 2on 2𝑜On
11 10 a1i RTopSpSTopSp2𝑜On
12 fnpr2o RTopSpSTopSpR1𝑜SFn2𝑜
13 eqid TopOpenScalarR𝑠R1𝑜S=TopOpenScalarR𝑠R1𝑜S
14 8 9 11 12 13 prdstopn RTopSpSTopSpTopOpenScalarR𝑠R1𝑜S=𝑡TopOpenR1𝑜S
15 topnfn TopOpenFnV
16 dffn2 R1𝑜SFn2𝑜R1𝑜S:2𝑜V
17 12 16 sylib RTopSpSTopSpR1𝑜S:2𝑜V
18 fnfco TopOpenFnVR1𝑜S:2𝑜VTopOpenR1𝑜SFn2𝑜
19 15 17 18 sylancr RTopSpSTopSpTopOpenR1𝑜SFn2𝑜
20 xpsfeq TopOpenR1𝑜SFn2𝑜TopOpenR1𝑜S1𝑜TopOpenR1𝑜S1𝑜=TopOpenR1𝑜S
21 19 20 syl RTopSpSTopSpTopOpenR1𝑜S1𝑜TopOpenR1𝑜S1𝑜=TopOpenR1𝑜S
22 0ex V
23 22 prid1 1𝑜
24 df2o3 2𝑜=1𝑜
25 23 24 eleqtrri 2𝑜
26 fvco2 R1𝑜SFn2𝑜2𝑜TopOpenR1𝑜S=TopOpenR1𝑜S
27 12 25 26 sylancl RTopSpSTopSpTopOpenR1𝑜S=TopOpenR1𝑜S
28 fvpr0o RTopSpR1𝑜S=R
29 28 adantr RTopSpSTopSpR1𝑜S=R
30 29 fveq2d RTopSpSTopSpTopOpenR1𝑜S=TopOpenR
31 30 2 eqtr4di RTopSpSTopSpTopOpenR1𝑜S=J
32 27 31 eqtrd RTopSpSTopSpTopOpenR1𝑜S=J
33 32 opeq2d RTopSpSTopSpTopOpenR1𝑜S=J
34 1oex 1𝑜V
35 34 prid2 1𝑜1𝑜
36 35 24 eleqtrri 1𝑜2𝑜
37 fvco2 R1𝑜SFn2𝑜1𝑜2𝑜TopOpenR1𝑜S1𝑜=TopOpenR1𝑜S1𝑜
38 12 36 37 sylancl RTopSpSTopSpTopOpenR1𝑜S1𝑜=TopOpenR1𝑜S1𝑜
39 fvpr1o STopSpR1𝑜S1𝑜=S
40 39 adantl RTopSpSTopSpR1𝑜S1𝑜=S
41 40 fveq2d RTopSpSTopSpTopOpenR1𝑜S1𝑜=TopOpenS
42 41 3 eqtr4di RTopSpSTopSpTopOpenR1𝑜S1𝑜=K
43 38 42 eqtrd RTopSpSTopSpTopOpenR1𝑜S1𝑜=K
44 43 opeq2d RTopSpSTopSp1𝑜TopOpenR1𝑜S1𝑜=1𝑜K
45 33 44 preq12d RTopSpSTopSpTopOpenR1𝑜S1𝑜TopOpenR1𝑜S1𝑜=J1𝑜K
46 21 45 eqtr3d RTopSpSTopSpTopOpenR1𝑜S=J1𝑜K
47 46 fveq2d RTopSpSTopSp𝑡TopOpenR1𝑜S=𝑡J1𝑜K
48 14 47 eqtrd RTopSpSTopSpTopOpenScalarR𝑠R1𝑜S=𝑡J1𝑜K
49 48 oveq1d RTopSpSTopSpTopOpenScalarR𝑠R1𝑜SqTopF-1=𝑡J1𝑜KqTopF-1
50 simpl RTopSpSTopSpRTopSp
51 simpr RTopSpSTopSpSTopSp
52 eqid ScalarR=ScalarR
53 1 5 6 50 51 7 52 8 xpsval RTopSpSTopSpT=F-1𝑠ScalarR𝑠R1𝑜S
54 1 5 6 50 51 7 52 8 xpsrnbas RTopSpSTopSpranF=BaseScalarR𝑠R1𝑜S
55 7 xpsff1o2 F:X×Y1-1 ontoranF
56 f1ocnv F:X×Y1-1 ontoranFF-1:ranF1-1 ontoX×Y
57 55 56 mp1i RTopSpSTopSpF-1:ranF1-1 ontoX×Y
58 f1ofo F-1:ranF1-1 ontoX×YF-1:ranFontoX×Y
59 57 58 syl RTopSpSTopSpF-1:ranFontoX×Y
60 ovexd RTopSpSTopSpScalarR𝑠R1𝑜SV
61 53 54 59 60 13 4 imastopn RTopSpSTopSpO=TopOpenScalarR𝑠R1𝑜SqTopF-1
62 5 2 istps RTopSpJTopOnX
63 50 62 sylib RTopSpSTopSpJTopOnX
64 6 3 istps STopSpKTopOnY
65 51 64 sylib RTopSpSTopSpKTopOnY
66 7 63 65 xpstopnlem1 RTopSpSTopSpFJ×tKHomeo𝑡J1𝑜K
67 hmeocnv FJ×tKHomeo𝑡J1𝑜KF-1𝑡J1𝑜KHomeoJ×tK
68 hmeoqtop F-1𝑡J1𝑜KHomeoJ×tKJ×tK=𝑡J1𝑜KqTopF-1
69 66 67 68 3syl RTopSpSTopSpJ×tK=𝑡J1𝑜KqTopF-1
70 49 61 69 3eqtr4d RTopSpSTopSpO=J×tK