Description: Lemma for xpstopn . (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpstps.t | |
|
xpstopn.j | |
||
xpstopn.k | |
||
xpstopn.o | |
||
xpstopnlem.x | |
||
xpstopnlem.y | |
||
xpstopnlem.f | |
||
Assertion | xpstopnlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpstps.t | |
|
2 | xpstopn.j | |
|
3 | xpstopn.k | |
|
4 | xpstopn.o | |
|
5 | xpstopnlem.x | |
|
6 | xpstopnlem.y | |
|
7 | xpstopnlem.f | |
|
8 | eqid | |
|
9 | fvexd | |
|
10 | 2on | |
|
11 | 10 | a1i | |
12 | fnpr2o | |
|
13 | eqid | |
|
14 | 8 9 11 12 13 | prdstopn | |
15 | topnfn | |
|
16 | dffn2 | |
|
17 | 12 16 | sylib | |
18 | fnfco | |
|
19 | 15 17 18 | sylancr | |
20 | xpsfeq | |
|
21 | 19 20 | syl | |
22 | 0ex | |
|
23 | 22 | prid1 | |
24 | df2o3 | |
|
25 | 23 24 | eleqtrri | |
26 | fvco2 | |
|
27 | 12 25 26 | sylancl | |
28 | fvpr0o | |
|
29 | 28 | adantr | |
30 | 29 | fveq2d | |
31 | 30 2 | eqtr4di | |
32 | 27 31 | eqtrd | |
33 | 32 | opeq2d | |
34 | 1oex | |
|
35 | 34 | prid2 | |
36 | 35 24 | eleqtrri | |
37 | fvco2 | |
|
38 | 12 36 37 | sylancl | |
39 | fvpr1o | |
|
40 | 39 | adantl | |
41 | 40 | fveq2d | |
42 | 41 3 | eqtr4di | |
43 | 38 42 | eqtrd | |
44 | 43 | opeq2d | |
45 | 33 44 | preq12d | |
46 | 21 45 | eqtr3d | |
47 | 46 | fveq2d | |
48 | 14 47 | eqtrd | |
49 | 48 | oveq1d | |
50 | simpl | |
|
51 | simpr | |
|
52 | eqid | |
|
53 | 1 5 6 50 51 7 52 8 | xpsval | |
54 | 1 5 6 50 51 7 52 8 | xpsrnbas | |
55 | 7 | xpsff1o2 | |
56 | f1ocnv | |
|
57 | 55 56 | mp1i | |
58 | f1ofo | |
|
59 | 57 58 | syl | |
60 | ovexd | |
|
61 | 53 54 59 60 13 4 | imastopn | |
62 | 5 2 | istps | |
63 | 50 62 | sylib | |
64 | 6 3 | istps | |
65 | 51 64 | sylib | |
66 | 7 63 65 | xpstopnlem1 | |
67 | hmeocnv | |
|
68 | hmeoqtop | |
|
69 | 66 67 68 | 3syl | |
70 | 49 61 69 | 3eqtr4d | |