Metamath Proof Explorer


Theorem xpundi

Description: Distributive law for Cartesian product over union. Theorem 103 of Suppes p. 52. (Contributed by NM, 12-Aug-2004)

Ref Expression
Assertion xpundi A×BC=A×BA×C

Proof

Step Hyp Ref Expression
1 df-xp A×BC=xy|xAyBC
2 df-xp A×B=xy|xAyB
3 df-xp A×C=xy|xAyC
4 2 3 uneq12i A×BA×C=xy|xAyBxy|xAyC
5 elun yBCyByC
6 5 anbi2i xAyBCxAyByC
7 andi xAyByCxAyBxAyC
8 6 7 bitri xAyBCxAyBxAyC
9 8 opabbii xy|xAyBC=xy|xAyBxAyC
10 unopab xy|xAyBxy|xAyC=xy|xAyBxAyC
11 9 10 eqtr4i xy|xAyBC=xy|xAyBxy|xAyC
12 4 11 eqtr4i A×BA×C=xy|xAyBC
13 1 12 eqtr4i A×BC=A×BA×C