Metamath Proof Explorer


Theorem xrlelttrd

Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses xrlttrd.1 φA*
xrlttrd.2 φB*
xrlttrd.3 φC*
xrlelttrd.4 φAB
xrlelttrd.5 φB<C
Assertion xrlelttrd φA<C

Proof

Step Hyp Ref Expression
1 xrlttrd.1 φA*
2 xrlttrd.2 φB*
3 xrlttrd.3 φC*
4 xrlelttrd.4 φAB
5 xrlelttrd.5 φB<C
6 xrlelttr A*B*C*ABB<CA<C
7 1 2 3 6 syl3anc φABB<CA<C
8 4 5 7 mp2and φA<C