Metamath Proof Explorer


Theorem xrltnsym2

Description: 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrltnsym2 A*B*¬A<BB<A

Proof

Step Hyp Ref Expression
1 xrltnsym A*B*A<B¬B<A
2 imnan A<B¬B<A¬A<BB<A
3 1 2 sylib A*B*¬A<BB<A