Metamath Proof Explorer


Theorem xrninxp

Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020)

Ref Expression
Assertion xrninxp R S A × B × C = y z u | y B z C u A u R S y z -1

Proof

Step Hyp Ref Expression
1 inxp2 R S A × B × C = u x | u A x B × C u R S x
2 df-3an u A x B × C u R S x u A x B × C u R S x
3 3anan12 u A x B × C u R S x x B × C u A u R S x
4 2 3 bitr3i u A x B × C u R S x x B × C u A u R S x
5 4 opabbii u x | u A x B × C u R S x = u x | x B × C u A u R S x
6 1 5 eqtri R S A × B × C = u x | x B × C u A u R S x
7 cnvopab x u | x B × C u A u R S x -1 = u x | x B × C u A u R S x
8 breq2 x = y z u R S x u R S y z
9 8 anbi2d x = y z u A u R S x u A u R S y z
10 9 dfoprab4 x u | x B × C u A u R S x = y z u | y B z C u A u R S y z
11 10 cnveqi x u | x B × C u A u R S x -1 = y z u | y B z C u A u R S y z -1
12 6 7 11 3eqtr2i R S A × B × C = y z u | y B z C u A u R S y z -1