Step |
Hyp |
Ref |
Expression |
1 |
|
inxp2 |
|- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) } |
2 |
|
df-3an |
|- ( ( u e. A /\ x e. ( B X. C ) /\ u ( R |X. S ) x ) <-> ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) ) |
3 |
|
3anan12 |
|- ( ( u e. A /\ x e. ( B X. C ) /\ u ( R |X. S ) x ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
4 |
2 3
|
bitr3i |
|- ( ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
5 |
4
|
opabbii |
|- { <. u , x >. | ( ( u e. A /\ x e. ( B X. C ) ) /\ u ( R |X. S ) x ) } = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
6 |
1 5
|
eqtri |
|- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
7 |
|
cnvopab |
|- `' { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
8 |
|
breq2 |
|- ( x = <. y , z >. -> ( u ( R |X. S ) x <-> u ( R |X. S ) <. y , z >. ) ) |
9 |
8
|
anbi2d |
|- ( x = <. y , z >. -> ( ( u e. A /\ u ( R |X. S ) x ) <-> ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) ) |
10 |
9
|
dfoprab4 |
|- { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |
11 |
10
|
cnveqi |
|- `' { <. x , u >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } = `' { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |
12 |
6 7 11
|
3eqtr2i |
|- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = `' { <. <. y , z >. , u >. | ( ( y e. B /\ z e. C ) /\ ( u e. A /\ u ( R |X. S ) <. y , z >. ) ) } |