Metamath Proof Explorer


Theorem xrninxp

Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020)

Ref Expression
Assertion xrninxp ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑢 ⟩ ∣ ( ( 𝑦𝐵𝑧𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) ) }

Proof

Step Hyp Ref Expression
1 inxp2 ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { ⟨ 𝑢 , 𝑥 ⟩ ∣ ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) }
2 df-3an ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) ↔ ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) )
3 3anan12 ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) )
4 2 3 bitr3i ( ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) ↔ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) )
5 4 opabbii { ⟨ 𝑢 , 𝑥 ⟩ ∣ ( ( 𝑢𝐴𝑥 ∈ ( 𝐵 × 𝐶 ) ) ∧ 𝑢 ( 𝑅𝑆 ) 𝑥 ) } = { ⟨ 𝑢 , 𝑥 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) }
6 1 5 eqtri ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { ⟨ 𝑢 , 𝑥 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) }
7 cnvopab { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) } = { ⟨ 𝑢 , 𝑥 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) }
8 breq2 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑢 ( 𝑅𝑆 ) 𝑥𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) )
9 8 anbi2d ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ↔ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) ) )
10 9 dfoprab4 { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) } = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑢 ⟩ ∣ ( ( 𝑦𝐵𝑧𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) ) }
11 10 cnveqi { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥 ∈ ( 𝐵 × 𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) 𝑥 ) ) } = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑢 ⟩ ∣ ( ( 𝑦𝐵𝑧𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) ) }
12 6 7 11 3eqtr2i ( ( 𝑅𝑆 ) ∩ ( 𝐴 × ( 𝐵 × 𝐶 ) ) ) = { ⟨ ⟨ 𝑦 , 𝑧 ⟩ , 𝑢 ⟩ ∣ ( ( 𝑦𝐵𝑧𝐶 ) ∧ ( 𝑢𝐴𝑢 ( 𝑅𝑆 ) ⟨ 𝑦 , 𝑧 ⟩ ) ) }