Metamath Proof Explorer


Theorem xrre4

Description: An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion xrre4 A*AA−∞A+∞

Proof

Step Hyp Ref Expression
1 renemnf AA−∞
2 1 adantl A*AA−∞
3 renepnf AA+∞
4 3 adantl A*AA+∞
5 2 4 jca A*AA−∞A+∞
6 5 ex A*AA−∞A+∞
7 simpl A*A−∞A+∞A*
8 simprl A*A−∞A+∞A−∞
9 simprr A*A−∞A+∞A+∞
10 7 8 9 xrred A*A−∞A+∞A
11 10 ex A*A−∞A+∞A
12 6 11 impbid A*AA−∞A+∞