Metamath Proof Explorer


Theorem xrs0

Description: The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass and df-xrs ), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017)

Ref Expression
Assertion xrs0 0=0𝑠*

Proof

Step Hyp Ref Expression
1 xrsbas *=Base𝑠*
2 1 a1i *=Base𝑠*
3 xrsadd +𝑒=+𝑠*
4 3 a1i +𝑒=+𝑠*
5 0xr 0*
6 5 a1i 0*
7 xaddlid x*0+𝑒x=x
8 7 adantl x*0+𝑒x=x
9 xaddrid x*x+𝑒0=x
10 9 adantl x*x+𝑒0=x
11 2 4 6 8 10 grpidd 0=0𝑠*
12 11 mptru 0=0𝑠*