Metamath Proof Explorer


Theorem xrssre

Description: A subset of extended reals that does not contain +oo and -oo is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses xrssre.1 φA*
xrssre.2 φ¬+∞A
xrssre.3 φ¬−∞A
Assertion xrssre φA

Proof

Step Hyp Ref Expression
1 xrssre.1 φA*
2 xrssre.2 φ¬+∞A
3 xrssre.3 φ¬−∞A
4 ssxr A*A+∞A−∞A
5 1 4 syl φA+∞A−∞A
6 3orass A+∞A−∞AA+∞A−∞A
7 5 6 sylib φA+∞A−∞A
8 7 orcomd φ+∞A−∞AA
9 2 3 jca φ¬+∞A¬−∞A
10 ioran ¬+∞A−∞A¬+∞A¬−∞A
11 9 10 sylibr φ¬+∞A−∞A
12 df-or +∞A−∞AA¬+∞A−∞AA
13 12 biimpi +∞A−∞AA¬+∞A−∞AA
14 8 11 13 sylc φA