Metamath Proof Explorer


Theorem zcld2

Description: The integers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis recld2.1 J=TopOpenfld
Assertion zcld2 ClsdJ

Proof

Step Hyp Ref Expression
1 recld2.1 J=TopOpenfld
2 1 recld2 ClsdJ
3 1 tgioo2 topGenran.=J𝑡
4 3 eqcomi J𝑡=topGenran.
5 4 zcld ClsdJ𝑡
6 restcldr ClsdJClsdJ𝑡ClsdJ
7 2 5 6 mp2an ClsdJ