| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recld2.1 |
|
| 2 |
|
restsspw |
|
| 3 |
|
elpwi |
|
| 4 |
3
|
sselda |
|
| 5 |
4
|
zcnd |
|
| 6 |
|
cnxmet |
|
| 7 |
|
1xr |
|
| 8 |
1
|
cnfldtopn |
|
| 9 |
8
|
blopn |
|
| 10 |
6 7 9
|
mp3an13 |
|
| 11 |
1
|
cnfldtop |
|
| 12 |
|
zex |
|
| 13 |
|
elrestr |
|
| 14 |
11 12 13
|
mp3an12 |
|
| 15 |
5 10 14
|
3syl |
|
| 16 |
|
1rp |
|
| 17 |
|
blcntr |
|
| 18 |
6 16 17
|
mp3an13 |
|
| 19 |
5 18
|
syl |
|
| 20 |
19 4
|
elind |
|
| 21 |
5
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
elin2d |
|
| 24 |
23
|
zcnd |
|
| 25 |
4
|
adantr |
|
| 26 |
25 23
|
zsubcld |
|
| 27 |
26
|
zcnd |
|
| 28 |
|
eqid |
|
| 29 |
28
|
cnmetdval |
|
| 30 |
21 24 29
|
syl2anc |
|
| 31 |
22
|
elin1d |
|
| 32 |
|
elbl2 |
|
| 33 |
6 7 32
|
mpanl12 |
|
| 34 |
21 24 33
|
syl2anc |
|
| 35 |
31 34
|
mpbid |
|
| 36 |
30 35
|
eqbrtrrd |
|
| 37 |
|
nn0abscl |
|
| 38 |
|
nn0lt10b |
|
| 39 |
26 37 38
|
3syl |
|
| 40 |
36 39
|
mpbid |
|
| 41 |
27 40
|
abs00d |
|
| 42 |
21 24 41
|
subeq0d |
|
| 43 |
|
simplr |
|
| 44 |
42 43
|
eqeltrrd |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
ssrdv |
|
| 47 |
|
eleq2 |
|
| 48 |
|
sseq1 |
|
| 49 |
47 48
|
anbi12d |
|
| 50 |
49
|
rspcev |
|
| 51 |
15 20 46 50
|
syl12anc |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
resttop |
|
| 54 |
11 12 53
|
mp2an |
|
| 55 |
|
eltop2 |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
52 56
|
sylibr |
|
| 58 |
57
|
ssriv |
|
| 59 |
2 58
|
eqssi |
|