Metamath Proof Explorer


Theorem zfcndun

Description: Axiom of Union ax-un , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfcndun yzwzwwxzy

Proof

Step Hyp Ref Expression
1 axunnd yzyzyyxzy
2 elequ2 w=yzwzy
3 elequ1 w=ywxyx
4 2 3 anbi12d w=yzwwxzyyx
5 4 cbvexvw wzwwxyzyyx
6 5 imbi1i wzwwxzyyzyyxzy
7 6 albii zwzwwxzyzyzyyxzy
8 7 exbii yzwzwwxzyyzyzyyxzy
9 1 8 mpbir yzwzwwxzy