Metamath Proof Explorer


Theorem zfcndun

Description: Axiom of Union ax-un , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfcndun 𝑦𝑧 ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 axunnd 𝑦𝑧 ( ∃ 𝑦 ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑦 )
2 elequ2 ( 𝑤 = 𝑦 → ( 𝑧𝑤𝑧𝑦 ) )
3 elequ1 ( 𝑤 = 𝑦 → ( 𝑤𝑥𝑦𝑥 ) )
4 2 3 anbi12d ( 𝑤 = 𝑦 → ( ( 𝑧𝑤𝑤𝑥 ) ↔ ( 𝑧𝑦𝑦𝑥 ) ) )
5 4 cbvexvw ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) ↔ ∃ 𝑦 ( 𝑧𝑦𝑦𝑥 ) )
6 5 imbi1i ( ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) ↔ ( ∃ 𝑦 ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑦 ) )
7 6 albii ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑦 ) )
8 7 exbii ( ∃ 𝑦𝑧 ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) ↔ ∃ 𝑦𝑧 ( ∃ 𝑦 ( 𝑧𝑦𝑦𝑥 ) → 𝑧𝑦 ) )
9 1 8 mpbir 𝑦𝑧 ( ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 )