| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axunnd | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) | 
						
							| 2 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 3 |  | elequ1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 4 | 2 3 | anbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 5 | 4 | cbvexvw | ⊢ ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 6 | 5 | imbi1i | ⊢ ( ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ( ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∀ 𝑧 ( ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 9 | 1 8 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  𝑧  ∈  𝑦 ) |