Metamath Proof Explorer


Theorem zfpair2

Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr . See zfpair for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006)

Ref Expression
Assertion zfpair2 xyV

Proof

Step Hyp Ref Expression
1 ax-pr zww=xw=ywz
2 1 bm1.3ii zwwzw=xw=y
3 dfcleq z=xywwzwxy
4 vex wV
5 4 elpr wxyw=xw=y
6 5 bibi2i wzwxywzw=xw=y
7 6 albii wwzwxywwzw=xw=y
8 3 7 bitri z=xywwzw=xw=y
9 8 exbii zz=xyzwwzw=xw=y
10 2 9 mpbir zz=xy
11 10 issetri xyV