Metamath Proof Explorer


Theorem zltp1led

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltp1led.1 φ M
zltp1led.2 φ N
Assertion zltp1led φ M < N M + 1 N

Proof

Step Hyp Ref Expression
1 zltp1led.1 φ M
2 zltp1led.2 φ N
3 zltp1le M N M < N M + 1 N
4 1 2 3 syl2anc φ M < N M + 1 N