Metamath Proof Explorer


Theorem zmodfzp1

Description: An integer mod B lies in the first B + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodfzp1 ABAmodB0B

Proof

Step Hyp Ref Expression
1 fzossfz 0..^B0B
2 zmodfzo ABAmodB0..^B
3 1 2 sselid ABAmodB0B