Metamath Proof Explorer


Theorem znzrhfo

Description: The ZZ ring homomorphism is a surjection onto ZZ / n ZZ . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses znzrhfo.y Y=/N
znzrhfo.b B=BaseY
znzrhfo.2 L=ℤRHomY
Assertion znzrhfo N0L:ontoB

Proof

Step Hyp Ref Expression
1 znzrhfo.y Y=/N
2 znzrhfo.b B=BaseY
3 znzrhfo.2 L=ℤRHomY
4 eqidd N0ring/𝑠ring~QGRSpanringN=ring/𝑠ring~QGRSpanringN
5 zringbas =Basering
6 5 a1i N0=Basering
7 eqid xxring~QGRSpanringN=xxring~QGRSpanringN
8 ovexd N0ring~QGRSpanringNV
9 zringring ringRing
10 9 a1i N0ringRing
11 4 6 7 8 10 quslem N0xxring~QGRSpanringN:onto/ring~QGRSpanringN
12 eqid RSpanring=RSpanring
13 eqid ring~QGRSpanringN=ring~QGRSpanringN
14 12 1 13 znbas N0/ring~QGRSpanringN=BaseY
15 14 2 eqtr4di N0/ring~QGRSpanringN=B
16 foeq3 /ring~QGRSpanringN=Bxxring~QGRSpanringN:onto/ring~QGRSpanringNxxring~QGRSpanringN:ontoB
17 15 16 syl N0xxring~QGRSpanringN:onto/ring~QGRSpanringNxxring~QGRSpanringN:ontoB
18 11 17 mpbid N0xxring~QGRSpanringN:ontoB
19 12 13 1 3 znzrh2 N0L=xxring~QGRSpanringN
20 foeq1 L=xxring~QGRSpanringNL:ontoBxxring~QGRSpanringN:ontoB
21 19 20 syl N0L:ontoBxxring~QGRSpanringN:ontoB
22 18 21 mpbird N0L:ontoB