Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
sgmval2 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) |
4 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℕ ) |
5 |
4
|
nncnd |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℂ ) |
6 |
5
|
exp0d |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → ( 𝑘 ↑ 0 ) = 1 ) |
7 |
6
|
sumeq2i |
⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 |
8 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin ) |
9 |
|
dvdsssfz1 |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
10 |
8 9
|
ssfid |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
|
fsumconst |
⊢ ( ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
14 |
7 13
|
eqtrid |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
15 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
16 |
10 15
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℂ ) |
18 |
17
|
mulid1d |
⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |
19 |
3 14 18
|
3eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |