Metamath Proof Explorer


Theorem 0sgm

Description: The value of the sum-of-divisors function, usually denoted σ0(n). (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion 0sgm
|- ( A e. NN -> ( 0 sigma A ) = ( # ` { p e. NN | p || A } ) )

Proof

Step Hyp Ref Expression
1 0z
 |-  0 e. ZZ
2 sgmval2
 |-  ( ( 0 e. ZZ /\ A e. NN ) -> ( 0 sigma A ) = sum_ k e. { p e. NN | p || A } ( k ^ 0 ) )
3 1 2 mpan
 |-  ( A e. NN -> ( 0 sigma A ) = sum_ k e. { p e. NN | p || A } ( k ^ 0 ) )
4 elrabi
 |-  ( k e. { p e. NN | p || A } -> k e. NN )
5 4 nncnd
 |-  ( k e. { p e. NN | p || A } -> k e. CC )
6 5 exp0d
 |-  ( k e. { p e. NN | p || A } -> ( k ^ 0 ) = 1 )
7 6 sumeq2i
 |-  sum_ k e. { p e. NN | p || A } ( k ^ 0 ) = sum_ k e. { p e. NN | p || A } 1
8 fzfid
 |-  ( A e. NN -> ( 1 ... A ) e. Fin )
9 dvdsssfz1
 |-  ( A e. NN -> { p e. NN | p || A } C_ ( 1 ... A ) )
10 8 9 ssfid
 |-  ( A e. NN -> { p e. NN | p || A } e. Fin )
11 ax-1cn
 |-  1 e. CC
12 fsumconst
 |-  ( ( { p e. NN | p || A } e. Fin /\ 1 e. CC ) -> sum_ k e. { p e. NN | p || A } 1 = ( ( # ` { p e. NN | p || A } ) x. 1 ) )
13 10 11 12 sylancl
 |-  ( A e. NN -> sum_ k e. { p e. NN | p || A } 1 = ( ( # ` { p e. NN | p || A } ) x. 1 ) )
14 7 13 eqtrid
 |-  ( A e. NN -> sum_ k e. { p e. NN | p || A } ( k ^ 0 ) = ( ( # ` { p e. NN | p || A } ) x. 1 ) )
15 hashcl
 |-  ( { p e. NN | p || A } e. Fin -> ( # ` { p e. NN | p || A } ) e. NN0 )
16 10 15 syl
 |-  ( A e. NN -> ( # ` { p e. NN | p || A } ) e. NN0 )
17 16 nn0cnd
 |-  ( A e. NN -> ( # ` { p e. NN | p || A } ) e. CC )
18 17 mulid1d
 |-  ( A e. NN -> ( ( # ` { p e. NN | p || A } ) x. 1 ) = ( # ` { p e. NN | p || A } ) )
19 3 14 18 3eqtrd
 |-  ( A e. NN -> ( 0 sigma A ) = ( # ` { p e. NN | p || A } ) )