Metamath Proof Explorer


Theorem 11t31e341

Description: 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion 11t31e341 ( 1 1 · 3 1 ) = 3 4 1

Proof

Step Hyp Ref Expression
1 3nn0 3 ∈ ℕ0
2 1nn0 1 ∈ ℕ0
3 1 2 deccl 3 1 ∈ ℕ0
4 eqid 1 1 = 1 1
5 3 nn0cni 3 1 ∈ ℂ
6 5 mulid2i ( 1 · 3 1 ) = 3 1
7 3cn 3 ∈ ℂ
8 ax-1cn 1 ∈ ℂ
9 3p1e4 ( 3 + 1 ) = 4
10 7 8 9 addcomli ( 1 + 3 ) = 4
11 1 2 1 6 10 decaddi ( ( 1 · 3 1 ) + 3 ) = 3 4
12 3 2 2 4 2 1 11 6 decmul1c ( 1 1 · 3 1 ) = 3 4 1