Description: The mapping of unary (endo)functions is a one-to-one function onto the set of endofunctions. (Contributed by AV, 19-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1arymaptfv.h | ⊢ 𝐻 = ( ℎ ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) ) | |
| Assertion | 1arymaptf1o | ⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) –1-1-onto→ ( 𝑋 ↑m 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arymaptfv.h | ⊢ 𝐻 = ( ℎ ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) ) | |
| 2 | 1 | 1arymaptf1 | ⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) –1-1→ ( 𝑋 ↑m 𝑋 ) ) |
| 3 | 1 | 1arymaptfo | ⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) –onto→ ( 𝑋 ↑m 𝑋 ) ) |
| 4 | df-f1o | ⊢ ( 𝐻 : ( 1 -aryF 𝑋 ) –1-1-onto→ ( 𝑋 ↑m 𝑋 ) ↔ ( 𝐻 : ( 1 -aryF 𝑋 ) –1-1→ ( 𝑋 ↑m 𝑋 ) ∧ 𝐻 : ( 1 -aryF 𝑋 ) –onto→ ( 𝑋 ↑m 𝑋 ) ) ) | |
| 5 | 2 3 4 | sylanbrc | ⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) –1-1-onto→ ( 𝑋 ↑m 𝑋 ) ) |