Step |
Hyp |
Ref |
Expression |
1 |
|
1arymaptfv.h |
⊢ 𝐻 = ( ℎ ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) ) |
2 |
1
|
1arymaptf |
⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) ⟶ ( 𝑋 ↑m 𝑋 ) ) |
3 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ 𝑋 ) |
4 |
|
eqid |
⊢ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) |
5 |
4
|
1arympt1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 : 𝑋 ⟶ 𝑋 ) → ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ∈ ( 1 -aryF 𝑋 ) ) |
6 |
3 5
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ∈ ( 1 -aryF 𝑋 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) → ( 𝐻 ‘ 𝑔 ) = ( 𝐻 ‘ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) → ( 𝑓 = ( 𝐻 ‘ 𝑔 ) ↔ 𝑓 = ( 𝐻 ‘ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ 𝑔 = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) → ( 𝑓 = ( 𝐻 ‘ 𝑔 ) ↔ 𝑓 = ( 𝐻 ‘ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ) ) |
10 |
3
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ 𝑋 ) |
11 |
10
|
feqmptd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → 𝑓 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
12 |
|
simplr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) |
13 |
|
fveq1 |
⊢ ( 𝑎 = { 〈 0 , 𝑥 〉 } → ( 𝑎 ‘ 0 ) = ( { 〈 0 , 𝑥 〉 } ‘ 0 ) ) |
14 |
|
c0ex |
⊢ 0 ∈ V |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
14 15
|
fvsn |
⊢ ( { 〈 0 , 𝑥 〉 } ‘ 0 ) = 𝑥 |
17 |
13 16
|
eqtrdi |
⊢ ( 𝑎 = { 〈 0 , 𝑥 〉 } → ( 𝑎 ‘ 0 ) = 𝑥 ) |
18 |
17
|
fveq2d |
⊢ ( 𝑎 = { 〈 0 , 𝑥 〉 } → ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑎 = { 〈 0 , 𝑥 〉 } ) → ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
20 |
14
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ V ) |
21 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
22 |
20 21
|
fsnd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 〈 0 , 𝑥 〉 } : { 0 } ⟶ 𝑋 ) |
23 |
|
snex |
⊢ { 0 } ∈ V |
24 |
23
|
a1i |
⊢ ( 𝑥 ∈ 𝑋 → { 0 } ∈ V ) |
25 |
|
elmapg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 0 } ∈ V ) → ( { 〈 0 , 𝑥 〉 } ∈ ( 𝑋 ↑m { 0 } ) ↔ { 〈 0 , 𝑥 〉 } : { 0 } ⟶ 𝑋 ) ) |
26 |
24 25
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 〈 0 , 𝑥 〉 } ∈ ( 𝑋 ↑m { 0 } ) ↔ { 〈 0 , 𝑥 〉 } : { 0 } ⟶ 𝑋 ) ) |
27 |
22 26
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 〈 0 , 𝑥 〉 } ∈ ( 𝑋 ↑m { 0 } ) ) |
28 |
27
|
ad4ant14 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) → { 〈 0 , 𝑥 〉 } ∈ ( 𝑋 ↑m { 0 } ) ) |
29 |
|
fvexd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) |
30 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) |
31 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) |
32 |
31
|
nfeq2 |
⊢ Ⅎ 𝑎 ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) |
33 |
30 32
|
nfan |
⊢ Ⅎ 𝑎 ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) |
34 |
|
nfv |
⊢ Ⅎ 𝑎 𝑥 ∈ 𝑋 |
35 |
33 34
|
nfan |
⊢ Ⅎ 𝑎 ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑎 { 〈 0 , 𝑥 〉 } |
37 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝑓 ‘ 𝑥 ) |
38 |
12 19 28 29 35 36 37
|
fvmptdf |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) = ( 𝑓 ‘ 𝑥 ) ) |
39 |
38
|
mpteq2dva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) ∧ ℎ = ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
40 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → 𝑋 ∈ 𝑉 ) |
41 |
40
|
mptexd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ∈ V ) |
42 |
1 39 6 41
|
fvmptd2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → ( 𝐻 ‘ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
43 |
11 42
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → 𝑓 = ( 𝐻 ‘ ( 𝑎 ∈ ( 𝑋 ↑m { 0 } ) ↦ ( 𝑓 ‘ ( 𝑎 ‘ 0 ) ) ) ) ) |
44 |
6 9 43
|
rspcedvd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ) → ∃ 𝑔 ∈ ( 1 -aryF 𝑋 ) 𝑓 = ( 𝐻 ‘ 𝑔 ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ∃ 𝑔 ∈ ( 1 -aryF 𝑋 ) 𝑓 = ( 𝐻 ‘ 𝑔 ) ) |
46 |
|
dffo3 |
⊢ ( 𝐻 : ( 1 -aryF 𝑋 ) –onto→ ( 𝑋 ↑m 𝑋 ) ↔ ( 𝐻 : ( 1 -aryF 𝑋 ) ⟶ ( 𝑋 ↑m 𝑋 ) ∧ ∀ 𝑓 ∈ ( 𝑋 ↑m 𝑋 ) ∃ 𝑔 ∈ ( 1 -aryF 𝑋 ) 𝑓 = ( 𝐻 ‘ 𝑔 ) ) ) |
47 |
2 45 46
|
sylanbrc |
⊢ ( 𝑋 ∈ 𝑉 → 𝐻 : ( 1 -aryF 𝑋 ) –onto→ ( 𝑋 ↑m 𝑋 ) ) |