Step |
Hyp |
Ref |
Expression |
1 |
|
1hegrlfgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
2 |
|
1hegrlfgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
1hegrlfgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
4 |
|
1hegrlfgr.n |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
5 |
|
1hegrlfgr.x |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) |
6 |
|
1hegrlfgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) |
7 |
|
1hegrlfgr.e |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 ) |
8 |
|
f1osng |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉 ) → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } –1-1-onto→ { 𝐸 } ) |
9 |
1 5 8
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } –1-1-onto→ { 𝐸 } ) |
10 |
|
f1of |
⊢ ( { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } –1-1-onto→ { 𝐸 } → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝐸 } ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝐸 } ) |
12 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
14 |
7 13
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
15 |
|
prid2g |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
17 |
7 16
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐸 ) |
18 |
5 14 17 4
|
nehash2 |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = 𝐸 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐸 ) ) |
20 |
19
|
breq2d |
⊢ ( 𝑥 = 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝐸 ) ) ) |
21 |
20
|
elrab |
⊢ ( 𝐸 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( 𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐸 ) ) ) |
22 |
5 18 21
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
23 |
22
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
24 |
11 23
|
fssd |
⊢ ( 𝜑 → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
25 |
6
|
feq1d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
26 |
24 25
|
mpbird |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |