Metamath Proof Explorer


Theorem 1hegrlfgr

Description: A graph G with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses 1hegrlfgr.a ( 𝜑𝐴𝑋 )
1hegrlfgr.b ( 𝜑𝐵𝑉 )
1hegrlfgr.c ( 𝜑𝐶𝑉 )
1hegrlfgr.n ( 𝜑𝐵𝐶 )
1hegrlfgr.x ( 𝜑𝐸 ∈ 𝒫 𝑉 )
1hegrlfgr.i ( 𝜑 → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , 𝐸 ⟩ } )
1hegrlfgr.e ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 )
Assertion 1hegrlfgr ( 𝜑 → ( iEdg ‘ 𝐺 ) : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 1hegrlfgr.a ( 𝜑𝐴𝑋 )
2 1hegrlfgr.b ( 𝜑𝐵𝑉 )
3 1hegrlfgr.c ( 𝜑𝐶𝑉 )
4 1hegrlfgr.n ( 𝜑𝐵𝐶 )
5 1hegrlfgr.x ( 𝜑𝐸 ∈ 𝒫 𝑉 )
6 1hegrlfgr.i ( 𝜑 → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , 𝐸 ⟩ } )
7 1hegrlfgr.e ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 )
8 f1osng ( ( 𝐴𝑋𝐸 ∈ 𝒫 𝑉 ) → { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐸 } )
9 1 5 8 syl2anc ( 𝜑 → { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐸 } )
10 f1of ( { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } –1-1-onto→ { 𝐸 } → { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } ⟶ { 𝐸 } )
11 9 10 syl ( 𝜑 → { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } ⟶ { 𝐸 } )
12 prid1g ( 𝐵𝑉𝐵 ∈ { 𝐵 , 𝐶 } )
13 2 12 syl ( 𝜑𝐵 ∈ { 𝐵 , 𝐶 } )
14 7 13 sseldd ( 𝜑𝐵𝐸 )
15 prid2g ( 𝐶𝑉𝐶 ∈ { 𝐵 , 𝐶 } )
16 3 15 syl ( 𝜑𝐶 ∈ { 𝐵 , 𝐶 } )
17 7 16 sseldd ( 𝜑𝐶𝐸 )
18 5 14 17 4 nehash2 ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) )
19 fveq2 ( 𝑥 = 𝐸 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐸 ) )
20 19 breq2d ( 𝑥 = 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝐸 ) ) )
21 20 elrab ( 𝐸 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( 𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝐸 ) ) )
22 5 18 21 sylanbrc ( 𝜑𝐸 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
23 22 snssd ( 𝜑 → { 𝐸 } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
24 11 23 fssd ( 𝜑 → { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
25 6 feq1d ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ { ⟨ 𝐴 , 𝐸 ⟩ } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) )
26 24 25 mpbird ( 𝜑 → ( iEdg ‘ 𝐺 ) : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )