| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1hegrlfgr.a |
|- ( ph -> A e. X ) |
| 2 |
|
1hegrlfgr.b |
|- ( ph -> B e. V ) |
| 3 |
|
1hegrlfgr.c |
|- ( ph -> C e. V ) |
| 4 |
|
1hegrlfgr.n |
|- ( ph -> B =/= C ) |
| 5 |
|
1hegrlfgr.x |
|- ( ph -> E e. ~P V ) |
| 6 |
|
1hegrlfgr.i |
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
| 7 |
|
1hegrlfgr.e |
|- ( ph -> { B , C } C_ E ) |
| 8 |
|
f1osng |
|- ( ( A e. X /\ E e. ~P V ) -> { <. A , E >. } : { A } -1-1-onto-> { E } ) |
| 9 |
1 5 8
|
syl2anc |
|- ( ph -> { <. A , E >. } : { A } -1-1-onto-> { E } ) |
| 10 |
|
f1of |
|- ( { <. A , E >. } : { A } -1-1-onto-> { E } -> { <. A , E >. } : { A } --> { E } ) |
| 11 |
9 10
|
syl |
|- ( ph -> { <. A , E >. } : { A } --> { E } ) |
| 12 |
|
prid1g |
|- ( B e. V -> B e. { B , C } ) |
| 13 |
2 12
|
syl |
|- ( ph -> B e. { B , C } ) |
| 14 |
7 13
|
sseldd |
|- ( ph -> B e. E ) |
| 15 |
|
prid2g |
|- ( C e. V -> C e. { B , C } ) |
| 16 |
3 15
|
syl |
|- ( ph -> C e. { B , C } ) |
| 17 |
7 16
|
sseldd |
|- ( ph -> C e. E ) |
| 18 |
5 14 17 4
|
nehash2 |
|- ( ph -> 2 <_ ( # ` E ) ) |
| 19 |
|
fveq2 |
|- ( x = E -> ( # ` x ) = ( # ` E ) ) |
| 20 |
19
|
breq2d |
|- ( x = E -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` E ) ) ) |
| 21 |
20
|
elrab |
|- ( E e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( E e. ~P V /\ 2 <_ ( # ` E ) ) ) |
| 22 |
5 18 21
|
sylanbrc |
|- ( ph -> E e. { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 23 |
22
|
snssd |
|- ( ph -> { E } C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 24 |
11 23
|
fssd |
|- ( ph -> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 25 |
6
|
feq1d |
|- ( ph -> ( ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } <-> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 26 |
24 25
|
mpbird |
|- ( ph -> ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) |