| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1hegrlfgr.a |  |-  ( ph -> A e. X ) | 
						
							| 2 |  | 1hegrlfgr.b |  |-  ( ph -> B e. V ) | 
						
							| 3 |  | 1hegrlfgr.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | 1hegrlfgr.n |  |-  ( ph -> B =/= C ) | 
						
							| 5 |  | 1hegrlfgr.x |  |-  ( ph -> E e. ~P V ) | 
						
							| 6 |  | 1hegrlfgr.i |  |-  ( ph -> ( iEdg ` G ) = { <. A , E >. } ) | 
						
							| 7 |  | 1hegrlfgr.e |  |-  ( ph -> { B , C } C_ E ) | 
						
							| 8 |  | f1osng |  |-  ( ( A e. X /\ E e. ~P V ) -> { <. A , E >. } : { A } -1-1-onto-> { E } ) | 
						
							| 9 | 1 5 8 | syl2anc |  |-  ( ph -> { <. A , E >. } : { A } -1-1-onto-> { E } ) | 
						
							| 10 |  | f1of |  |-  ( { <. A , E >. } : { A } -1-1-onto-> { E } -> { <. A , E >. } : { A } --> { E } ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> { <. A , E >. } : { A } --> { E } ) | 
						
							| 12 |  | prid1g |  |-  ( B e. V -> B e. { B , C } ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> B e. { B , C } ) | 
						
							| 14 | 7 13 | sseldd |  |-  ( ph -> B e. E ) | 
						
							| 15 |  | prid2g |  |-  ( C e. V -> C e. { B , C } ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> C e. { B , C } ) | 
						
							| 17 | 7 16 | sseldd |  |-  ( ph -> C e. E ) | 
						
							| 18 | 5 14 17 4 | nehash2 |  |-  ( ph -> 2 <_ ( # ` E ) ) | 
						
							| 19 |  | fveq2 |  |-  ( x = E -> ( # ` x ) = ( # ` E ) ) | 
						
							| 20 | 19 | breq2d |  |-  ( x = E -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` E ) ) ) | 
						
							| 21 | 20 | elrab |  |-  ( E e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( E e. ~P V /\ 2 <_ ( # ` E ) ) ) | 
						
							| 22 | 5 18 21 | sylanbrc |  |-  ( ph -> E e. { x e. ~P V | 2 <_ ( # ` x ) } ) | 
						
							| 23 | 22 | snssd |  |-  ( ph -> { E } C_ { x e. ~P V | 2 <_ ( # ` x ) } ) | 
						
							| 24 | 11 23 | fssd |  |-  ( ph -> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) | 
						
							| 25 | 6 | feq1d |  |-  ( ph -> ( ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } <-> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) | 
						
							| 26 | 24 25 | mpbird |  |-  ( ph -> ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) |