Metamath Proof Explorer


Theorem 1hegrlfgr

Description: A graph G with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses 1hegrlfgr.a
|- ( ph -> A e. X )
1hegrlfgr.b
|- ( ph -> B e. V )
1hegrlfgr.c
|- ( ph -> C e. V )
1hegrlfgr.n
|- ( ph -> B =/= C )
1hegrlfgr.x
|- ( ph -> E e. ~P V )
1hegrlfgr.i
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } )
1hegrlfgr.e
|- ( ph -> { B , C } C_ E )
Assertion 1hegrlfgr
|- ( ph -> ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } )

Proof

Step Hyp Ref Expression
1 1hegrlfgr.a
 |-  ( ph -> A e. X )
2 1hegrlfgr.b
 |-  ( ph -> B e. V )
3 1hegrlfgr.c
 |-  ( ph -> C e. V )
4 1hegrlfgr.n
 |-  ( ph -> B =/= C )
5 1hegrlfgr.x
 |-  ( ph -> E e. ~P V )
6 1hegrlfgr.i
 |-  ( ph -> ( iEdg ` G ) = { <. A , E >. } )
7 1hegrlfgr.e
 |-  ( ph -> { B , C } C_ E )
8 f1osng
 |-  ( ( A e. X /\ E e. ~P V ) -> { <. A , E >. } : { A } -1-1-onto-> { E } )
9 1 5 8 syl2anc
 |-  ( ph -> { <. A , E >. } : { A } -1-1-onto-> { E } )
10 f1of
 |-  ( { <. A , E >. } : { A } -1-1-onto-> { E } -> { <. A , E >. } : { A } --> { E } )
11 9 10 syl
 |-  ( ph -> { <. A , E >. } : { A } --> { E } )
12 prid1g
 |-  ( B e. V -> B e. { B , C } )
13 2 12 syl
 |-  ( ph -> B e. { B , C } )
14 7 13 sseldd
 |-  ( ph -> B e. E )
15 prid2g
 |-  ( C e. V -> C e. { B , C } )
16 3 15 syl
 |-  ( ph -> C e. { B , C } )
17 7 16 sseldd
 |-  ( ph -> C e. E )
18 5 14 17 4 nehash2
 |-  ( ph -> 2 <_ ( # ` E ) )
19 fveq2
 |-  ( x = E -> ( # ` x ) = ( # ` E ) )
20 19 breq2d
 |-  ( x = E -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` E ) ) )
21 20 elrab
 |-  ( E e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( E e. ~P V /\ 2 <_ ( # ` E ) ) )
22 5 18 21 sylanbrc
 |-  ( ph -> E e. { x e. ~P V | 2 <_ ( # ` x ) } )
23 22 snssd
 |-  ( ph -> { E } C_ { x e. ~P V | 2 <_ ( # ` x ) } )
24 11 23 fssd
 |-  ( ph -> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } )
25 6 feq1d
 |-  ( ph -> ( ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } <-> { <. A , E >. } : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } ) )
26 24 25 mpbird
 |-  ( ph -> ( iEdg ` G ) : { A } --> { x e. ~P V | 2 <_ ( # ` x ) } )