Metamath Proof Explorer


Theorem 1t10e1p1e11

Description: 11 is 1 times 10 to the power of 1, plus 1. (Contributed by AV, 4-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion 1t10e1p1e11 1 1 = ( ( 1 · ( 1 0 ↑ 1 ) ) + 1 )

Proof

Step Hyp Ref Expression
1 dfdec10 1 1 = ( ( 1 0 · 1 ) + 1 )
2 ax-1cn 1 ∈ ℂ
3 10nn 1 0 ∈ ℕ
4 3 nncni 1 0 ∈ ℂ
5 exp1 ( 1 0 ∈ ℂ → ( 1 0 ↑ 1 ) = 1 0 )
6 4 5 ax-mp ( 1 0 ↑ 1 ) = 1 0
7 6 eqcomi 1 0 = ( 1 0 ↑ 1 )
8 7 oveq2i ( 1 · 1 0 ) = ( 1 · ( 1 0 ↑ 1 ) )
9 2 4 8 mulcomli ( 1 0 · 1 ) = ( 1 · ( 1 0 ↑ 1 ) )
10 9 oveq1i ( ( 1 0 · 1 ) + 1 ) = ( ( 1 · ( 1 0 ↑ 1 ) ) + 1 )
11 1 10 eqtri 1 1 = ( ( 1 · ( 1 0 ↑ 1 ) ) + 1 )