Step |
Hyp |
Ref |
Expression |
1 |
|
df-dec |
⊢ ; ( 𝐴 + 1 ) 0 = ( ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) + 0 ) |
2 |
|
9nn |
⊢ 9 ∈ ℕ |
3 |
|
peano2nn |
⊢ ( 9 ∈ ℕ → ( 9 + 1 ) ∈ ℕ ) |
4 |
2 3
|
ax-mp |
⊢ ( 9 + 1 ) ∈ ℕ |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℕ → ( 9 + 1 ) ∈ ℕ ) |
6 |
|
peano2nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |
7 |
5 6
|
nnmulcld |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) ∈ ℕ ) |
8 |
7
|
nncnd |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) ∈ ℂ ) |
9 |
8
|
addid1d |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) + 0 ) = ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) ) |
10 |
4
|
nncni |
⊢ ( 9 + 1 ) ∈ ℂ |
11 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℕ → ( 9 + 1 ) ∈ ℂ ) |
12 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
13 |
|
1cnd |
⊢ ( 𝐴 ∈ ℕ → 1 ∈ ℂ ) |
14 |
11 12 13
|
adddid |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) = ( ( ( 9 + 1 ) · 𝐴 ) + ( ( 9 + 1 ) · 1 ) ) ) |
15 |
11
|
mulid1d |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · 1 ) = ( 9 + 1 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 9 + 1 ) · 𝐴 ) + ( ( 9 + 1 ) · 1 ) ) = ( ( ( 9 + 1 ) · 𝐴 ) + ( 9 + 1 ) ) ) |
17 |
|
df-dec |
⊢ ; 𝐴 9 = ( ( ( 9 + 1 ) · 𝐴 ) + 9 ) |
18 |
17
|
oveq1i |
⊢ ( ; 𝐴 9 + 1 ) = ( ( ( ( 9 + 1 ) · 𝐴 ) + 9 ) + 1 ) |
19 |
|
id |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ ) |
20 |
5 19
|
nnmulcld |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · 𝐴 ) ∈ ℕ ) |
21 |
20
|
nncnd |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · 𝐴 ) ∈ ℂ ) |
22 |
2
|
nncni |
⊢ 9 ∈ ℂ |
23 |
22
|
a1i |
⊢ ( 𝐴 ∈ ℕ → 9 ∈ ℂ ) |
24 |
21 23 13
|
addassd |
⊢ ( 𝐴 ∈ ℕ → ( ( ( ( 9 + 1 ) · 𝐴 ) + 9 ) + 1 ) = ( ( ( 9 + 1 ) · 𝐴 ) + ( 9 + 1 ) ) ) |
25 |
18 24
|
eqtr2id |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 9 + 1 ) · 𝐴 ) + ( 9 + 1 ) ) = ( ; 𝐴 9 + 1 ) ) |
26 |
16 25
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 9 + 1 ) · 𝐴 ) + ( ( 9 + 1 ) · 1 ) ) = ( ; 𝐴 9 + 1 ) ) |
27 |
14 26
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) = ( ; 𝐴 9 + 1 ) ) |
28 |
9 27
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ → ( ( ( 9 + 1 ) · ( 𝐴 + 1 ) ) + 0 ) = ( ; 𝐴 9 + 1 ) ) |
29 |
1 28
|
eqtr2id |
⊢ ( 𝐴 ∈ ℕ → ( ; 𝐴 9 + 1 ) = ; ( 𝐴 + 1 ) 0 ) |