Metamath Proof Explorer
Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011)
|
|
Ref |
Expression |
|
Hypothesis |
2alanimi.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
2alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) → ∀ 𝑥 ∀ 𝑦 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2alanimi.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
2 |
1
|
alanimi |
⊢ ( ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) → ∀ 𝑦 𝜒 ) |
3 |
2
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) → ∀ 𝑥 ∀ 𝑦 𝜒 ) |