Metamath Proof Explorer


Theorem 2arymaptf1o

Description: The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024)

Ref Expression
Hypothesis 2arymaptf.h 𝐻 = ( ∈ ( 2 -aryF 𝑋 ) ↦ ( 𝑥𝑋 , 𝑦𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑦 ⟩ } ) ) )
Assertion 2arymaptf1o ( 𝑋𝑉𝐻 : ( 2 -aryF 𝑋 ) –1-1-onto→ ( 𝑋m ( 𝑋 × 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 2arymaptf.h 𝐻 = ( ∈ ( 2 -aryF 𝑋 ) ↦ ( 𝑥𝑋 , 𝑦𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑦 ⟩ } ) ) )
2 1 2arymaptf1 ( 𝑋𝑉𝐻 : ( 2 -aryF 𝑋 ) –1-1→ ( 𝑋m ( 𝑋 × 𝑋 ) ) )
3 1 2arymaptfo ( 𝑋𝑉𝐻 : ( 2 -aryF 𝑋 ) –onto→ ( 𝑋m ( 𝑋 × 𝑋 ) ) )
4 df-f1o ( 𝐻 : ( 2 -aryF 𝑋 ) –1-1-onto→ ( 𝑋m ( 𝑋 × 𝑋 ) ) ↔ ( 𝐻 : ( 2 -aryF 𝑋 ) –1-1→ ( 𝑋m ( 𝑋 × 𝑋 ) ) ∧ 𝐻 : ( 2 -aryF 𝑋 ) –onto→ ( 𝑋m ( 𝑋 × 𝑋 ) ) ) )
5 2 3 4 sylanbrc ( 𝑋𝑉𝐻 : ( 2 -aryF 𝑋 ) –1-1-onto→ ( 𝑋m ( 𝑋 × 𝑋 ) ) )