Description: The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2arymaptf.h | |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) |
|
Assertion | 2arymaptf1o | |- ( X e. V -> H : ( 2 -aryF X ) -1-1-onto-> ( X ^m ( X X. X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2arymaptf.h | |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) |
|
2 | 1 | 2arymaptf1 | |- ( X e. V -> H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) ) |
3 | 1 | 2arymaptfo | |- ( X e. V -> H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) ) |
4 | df-f1o | |- ( H : ( 2 -aryF X ) -1-1-onto-> ( X ^m ( X X. X ) ) <-> ( H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) /\ H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) ) ) |
|
5 | 2 3 4 | sylanbrc | |- ( X e. V -> H : ( 2 -aryF X ) -1-1-onto-> ( X ^m ( X X. X ) ) ) |