Metamath Proof Explorer


Theorem 2arymaptf1o

Description: The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024)

Ref Expression
Hypothesis 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
Assertion 2arymaptf1o X V H : 2 -aryF X 1-1 onto X X × X

Proof

Step Hyp Ref Expression
1 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
2 1 2arymaptf1 X V H : 2 -aryF X 1-1 X X × X
3 1 2arymaptfo X V H : 2 -aryF X onto X X × X
4 df-f1o H : 2 -aryF X 1-1 onto X X × X H : 2 -aryF X 1-1 X X × X H : 2 -aryF X onto X X × X
5 2 3 4 sylanbrc X V H : 2 -aryF X 1-1 onto X X × X