Metamath Proof Explorer


Theorem 2arymaptfo

Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024)

Ref Expression
Hypothesis 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
Assertion 2arymaptfo X V H : 2 -aryF X onto X X × X

Proof

Step Hyp Ref Expression
1 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
2 1 2arymaptf X V H : 2 -aryF X X X × X
3 elmapi f X X × X f : X × X X
4 eqid a X 0 1 a 0 f a 1 = a X 0 1 a 0 f a 1
5 4 2arympt X V f : X × X X a X 0 1 a 0 f a 1 2 -aryF X
6 3 5 sylan2 X V f X X × X a X 0 1 a 0 f a 1 2 -aryF X
7 fveq2 g = a X 0 1 a 0 f a 1 H g = H a X 0 1 a 0 f a 1
8 7 eqeq2d g = a X 0 1 a 0 f a 1 f = H g f = H a X 0 1 a 0 f a 1
9 8 adantl X V f X X × X g = a X 0 1 a 0 f a 1 f = H g f = H a X 0 1 a 0 f a 1
10 elmapfn f X X × X f Fn X × X
11 10 adantl X V f X X × X f Fn X × X
12 fnov f Fn X × X f = x X , y X x f y
13 11 12 sylib X V f X X × X f = x X , y X x f y
14 simp1r X V f X X × X h = a X 0 1 a 0 f a 1 x X y X h = a X 0 1 a 0 f a 1
15 fveq1 a = 0 x 1 y a 0 = 0 x 1 y 0
16 0ne1 0 1
17 c0ex 0 V
18 vex x V
19 17 18 fvpr1 0 1 0 x 1 y 0 = x
20 16 19 ax-mp 0 x 1 y 0 = x
21 15 20 eqtrdi a = 0 x 1 y a 0 = x
22 fveq1 a = 0 x 1 y a 1 = 0 x 1 y 1
23 1ex 1 V
24 vex y V
25 23 24 fvpr2 0 1 0 x 1 y 1 = y
26 16 25 ax-mp 0 x 1 y 1 = y
27 22 26 eqtrdi a = 0 x 1 y a 1 = y
28 21 27 oveq12d a = 0 x 1 y a 0 f a 1 = x f y
29 28 adantl X V f X X × X h = a X 0 1 a 0 f a 1 x X y X a = 0 x 1 y a 0 f a 1 = x f y
30 17 23 pm3.2i 0 V 1 V
31 fprg 0 V 1 V x X y X 0 1 0 x 1 y : 0 1 x y
32 30 16 31 mp3an13 x X y X 0 x 1 y : 0 1 x y
33 32 3adant1 X V x X y X 0 x 1 y : 0 1 x y
34 prssi x X y X x y X
35 34 3adant1 X V x X y X x y X
36 33 35 fssd X V x X y X 0 x 1 y : 0 1 X
37 simp1 X V x X y X X V
38 prex 0 1 V
39 38 a1i X V x X y X 0 1 V
40 37 39 elmapd X V x X y X 0 x 1 y X 0 1 0 x 1 y : 0 1 X
41 36 40 mpbird X V x X y X 0 x 1 y X 0 1
42 41 3adant1r X V f X X × X x X y X 0 x 1 y X 0 1
43 42 3adant1r X V f X X × X h = a X 0 1 a 0 f a 1 x X y X 0 x 1 y X 0 1
44 ovexd X V f X X × X h = a X 0 1 a 0 f a 1 x X y X x f y V
45 nfv a X V f X X × X
46 nfmpt1 _ a a X 0 1 a 0 f a 1
47 46 nfeq2 a h = a X 0 1 a 0 f a 1
48 45 47 nfan a X V f X X × X h = a X 0 1 a 0 f a 1
49 nfv a x X
50 nfv a y X
51 48 49 50 nf3an a X V f X X × X h = a X 0 1 a 0 f a 1 x X y X
52 nfcv _ a 0 x 1 y
53 nfcv _ a x f y
54 14 29 43 44 51 52 53 fvmptdf X V f X X × X h = a X 0 1 a 0 f a 1 x X y X h 0 x 1 y = x f y
55 54 mpoeq3dva X V f X X × X h = a X 0 1 a 0 f a 1 x X , y X h 0 x 1 y = x X , y X x f y
56 mpoexga X V X V x X , y X x f y V
57 56 anidms X V x X , y X x f y V
58 57 adantr X V f X X × X x X , y X x f y V
59 1 55 6 58 fvmptd2 X V f X X × X H a X 0 1 a 0 f a 1 = x X , y X x f y
60 13 59 eqtr4d X V f X X × X f = H a X 0 1 a 0 f a 1
61 6 9 60 rspcedvd X V f X X × X g 2 -aryF X f = H g
62 61 ralrimiva X V f X X × X g 2 -aryF X f = H g
63 dffo3 H : 2 -aryF X onto X X × X H : 2 -aryF X X X × X f X X × X g 2 -aryF X f = H g
64 2 62 63 sylanbrc X V H : 2 -aryF X onto X X × X