| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex | ⊢ ( 2 -aryF  𝑋 )  ∈  V | 
						
							| 2 | 1 | mptex | ⊢ ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) )  ∈  V | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑋  ∈  V  →  ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) )  ∈  V ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) )  =  ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) ) | 
						
							| 5 | 4 | 2arymaptf1o | ⊢ ( 𝑋  ∈  V  →  ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) ) : ( 2 -aryF  𝑋 ) –1-1-onto→ ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 6 |  | f1oeq1 | ⊢ ( ℎ  =  ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) )  →  ( ℎ : ( 2 -aryF  𝑋 ) –1-1-onto→ ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) )  ↔  ( 𝑓  ∈  ( 2 -aryF  𝑋 )  ↦  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑓 ‘ { 〈 0 ,  𝑥 〉 ,  〈 1 ,  𝑦 〉 } ) ) ) : ( 2 -aryF  𝑋 ) –1-1-onto→ ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) ) | 
						
							| 7 | 3 5 6 | spcedv | ⊢ ( 𝑋  ∈  V  →  ∃ ℎ ℎ : ( 2 -aryF  𝑋 ) –1-1-onto→ ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 8 |  | bren | ⊢ ( ( 2 -aryF  𝑋 )  ≈  ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) )  ↔  ∃ ℎ ℎ : ( 2 -aryF  𝑋 ) –1-1-onto→ ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝑋  ∈  V  →  ( 2 -aryF  𝑋 )  ≈  ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 | 10 | enref | ⊢ ∅  ≈  ∅ | 
						
							| 12 | 11 | a1i | ⊢ ( ¬  𝑋  ∈  V  →  ∅  ≈  ∅ ) | 
						
							| 13 |  | df-naryf | ⊢ -aryF   =  ( 𝑛  ∈  ℕ0 ,  𝑥  ∈  V  ↦  ( 𝑥  ↑m  ( 𝑥  ↑m  ( 0 ..^ 𝑛 ) ) ) ) | 
						
							| 14 | 13 | reldmmpo | ⊢ Rel  dom  -aryF | 
						
							| 15 | 14 | ovprc2 | ⊢ ( ¬  𝑋  ∈  V  →  ( 2 -aryF  𝑋 )  =  ∅ ) | 
						
							| 16 |  | reldmmap | ⊢ Rel  dom   ↑m | 
						
							| 17 | 16 | ovprc1 | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) )  =  ∅ ) | 
						
							| 18 | 12 15 17 | 3brtr4d | ⊢ ( ¬  𝑋  ∈  V  →  ( 2 -aryF  𝑋 )  ≈  ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 19 | 9 18 | pm2.61i | ⊢ ( 2 -aryF  𝑋 )  ≈  ( 𝑋  ↑m  ( 𝑋  ×  𝑋 ) ) |