| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2eu4 | 
							⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑  ∧  ∃! 𝑦 ∃ 𝑥 𝜑 )  ↔  ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nfia1 | 
							⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfa1 | 
							⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝑥  =  𝑧  | 
						
						
							| 5 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑥  =  𝑧 )  | 
						
						
							| 6 | 
							
								5
							 | 
							imim2i | 
							⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							sps | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							exlimd | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ax12v | 
							⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syli | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							com12 | 
							⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							spsd | 
							⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							nfs1v | 
							⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑦  =  𝑤 )  | 
						
						
							| 15 | 
							
								14
							 | 
							imim2i | 
							⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑦  =  𝑤 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							sbequ1 | 
							⊢ ( 𝑦  =  𝑤  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syli | 
							⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							sps | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 19 | 
							
								3 13 18
							 | 
							exlimd | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imim2d | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							al2imi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							sb6 | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							2sb6 | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							bitr3i | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							imbitrdi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) )  | 
						
						
							| 26 | 
							
								12 25
							 | 
							sylcom | 
							⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ancld | 
							⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							2albiim | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							imbitrrdi | 
							⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 30 | 
							
								2 29
							 | 
							exlimi | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							2eximdv | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  →  ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							imp | 
							⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							biimpr | 
							⊢ ( ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							2alimi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							2eximi | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							2exsb | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sylibr | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑥 ∃ 𝑦 𝜑 )  | 
						
						
							| 38 | 
							
								
							 | 
							biimp | 
							⊢ ( ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							2alimi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							2eximi | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 41 | 
							
								37 40
							 | 
							jca | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 42 | 
							
								32 41
							 | 
							impbii | 
							⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 43 | 
							
								1 42
							 | 
							bitri | 
							⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑  ∧  ∃! 𝑦 ∃ 𝑥 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  |