| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2if2.1 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐷  =  𝐴 ) | 
						
							| 2 |  | 2if2.2 | ⊢ ( ( 𝜑  ∧  ¬  𝜓  ∧  𝜃 )  →  𝐷  =  𝐵 ) | 
						
							| 3 |  | 2if2.3 | ⊢ ( ( 𝜑  ∧  ¬  𝜓  ∧  ¬  𝜃 )  →  𝐷  =  𝐶 ) | 
						
							| 4 |  | iftrue | ⊢ ( 𝜓  →  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) )  =  𝐴 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) )  =  𝐴 ) | 
						
							| 6 | 1 5 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐷  =  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 7 | 2 | 3expa | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  𝜃 )  →  𝐷  =  𝐵 ) | 
						
							| 8 |  | iftrue | ⊢ ( 𝜃  →  if ( 𝜃 ,  𝐵 ,  𝐶 )  =  𝐵 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  𝜃 )  →  if ( 𝜃 ,  𝐵 ,  𝐶 )  =  𝐵 ) | 
						
							| 10 | 7 9 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  𝜃 )  →  𝐷  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 11 | 3 | 3expa | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  ¬  𝜃 )  →  𝐷  =  𝐶 ) | 
						
							| 12 |  | iffalse | ⊢ ( ¬  𝜃  →  if ( 𝜃 ,  𝐵 ,  𝐶 )  =  𝐶 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ¬  𝜃  →  𝐶  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  ¬  𝜃 )  →  𝐶  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 15 | 11 14 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝜓 )  ∧  ¬  𝜃 )  →  𝐷  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 16 | 10 15 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  𝐷  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 17 |  | iffalse | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) | 
						
							| 19 | 16 18 | eqtr4d | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  𝐷  =  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 20 | 6 19 | pm2.61dan | ⊢ ( 𝜑  →  𝐷  =  if ( 𝜓 ,  𝐴 ,  if ( 𝜃 ,  𝐵 ,  𝐶 ) ) ) |