| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2polpmap.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
2polpmap.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 3 |
|
2polpmap.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 5 |
1 4 2 3
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( ⊥ ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 8 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 |
1 4 2 3
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 11 |
9 10
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 12 |
1 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 13 |
7 12
|
sylan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀 ‘ 𝑋 ) ) |
| 15 |
6 11 14
|
3eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝑀 ‘ 𝑋 ) ) |