Metamath Proof Explorer


Theorem 2polpmapN

Description: Double polarity of a projective map. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polpmap.b 𝐵 = ( Base ‘ 𝐾 )
2polpmap.m 𝑀 = ( pmap ‘ 𝐾 )
2polpmap.p = ( ⊥𝑃𝐾 )
Assertion 2polpmapN ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ‘ ( ‘ ( 𝑀𝑋 ) ) ) = ( 𝑀𝑋 ) )

Proof

Step Hyp Ref Expression
1 2polpmap.b 𝐵 = ( Base ‘ 𝐾 )
2 2polpmap.m 𝑀 = ( pmap ‘ 𝐾 )
3 2polpmap.p = ( ⊥𝑃𝐾 )
4 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
5 1 4 2 3 polpmapN ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ‘ ( 𝑀𝑋 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )
6 5 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ‘ ( ‘ ( 𝑀𝑋 ) ) ) = ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
7 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
8 1 4 opoccl ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 )
9 7 8 sylan ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 )
10 1 4 2 3 polpmapN ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
11 9 10 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) )
12 1 4 opococ ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 )
13 7 12 sylan ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 )
14 13 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) = ( 𝑀𝑋 ) )
15 6 11 14 3eqtrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ‘ ( ‘ ( 𝑀𝑋 ) ) ) = ( 𝑀𝑋 ) )