| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2polpmap.b |
|- B = ( Base ` K ) |
| 2 |
|
2polpmap.m |
|- M = ( pmap ` K ) |
| 3 |
|
2polpmap.p |
|- ._|_ = ( _|_P ` K ) |
| 4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 5 |
1 4 2 3
|
polpmapN |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( M ` X ) ) = ( M ` ( ( oc ` K ) ` X ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( ._|_ ` ( M ` X ) ) ) = ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) ) |
| 7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 8 |
1 4
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 9 |
7 8
|
sylan |
|- ( ( K e. HL /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 10 |
1 4 2 3
|
polpmapN |
|- ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. B ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
| 11 |
9 10
|
syldan |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
| 12 |
1 4
|
opococ |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 13 |
7 12
|
sylan |
|- ( ( K e. HL /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 14 |
13
|
fveq2d |
|- ( ( K e. HL /\ X e. B ) -> ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) = ( M ` X ) ) |
| 15 |
6 11 14
|
3eqtrd |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( ._|_ ` ( M ` X ) ) ) = ( M ` X ) ) |